
Repositories & CLIs – “Code as cattle not pets”

Presenter : Brian Greene | CTO NeuronSphere

Is each source repository in your org its own unique pet?

Does each one require special incantations to build or test?

Is CI/CD consistent and transparent?

Accounting for cross-technology & lifecycle repository management demands and how to design an extensible CLI framework to streamline developer workflows

1

Goals (want)

2

Strategy (how)

1. Allow developers to think
less & go faster

2. Make it easier to break
Conway’s Law

3. Produce higher-quality
software

* Assumes we are doing N of
things

1. Apply a component-based development approach,
anchored in a poly-repo code management strategy:
• Everything is Code
• Universal Versioning
• Dependency Management
• Packaging Consistency
• Artifact Output/Distribution

2. Invert and unify CLIs to manage #1
• If everything is code, and the code is laid out

consistently, then the repo is the parameter!

Conway’s Law: Any organization that designs a system (defined broadly) will produce a design whose structure is a copy of the
organization's communication structure.

(what)

Anti-Conway Software* delivery starts with many small repositories focused on artifact interaction patterns with orthogonal tooling to manage them

Example Before After (with revs)

3

Code Repositories (as) ~Architectural Quantum

4

”Everything is code in git” is a great baseline
- but not nearly enough

We all have a diverse architecture that's growing
 - Software, Data models, Infrastructure, Analytics, Security

It exists as a collection of self-referencing, version-able, components
representable as Artifacts
 - (whether you manage it that way or not today)

All technologies provide mechanisms for reuse, inclusion, reference,
leading to the core capabilities of:
• Versioning
• Packaging
• Dependencies
• Artifacts (Distribution)
Many challenges are easier after consistently solving these basic
problems at a cross-team, cross-technology, platform level

What’s a basic standard repo look like?

5

- Docs and Integration tests, better

- Example of ‘facets’ (rather than by tech)

- An example of a collection of repos

The manifest is a contract:
• with other repos
• with platform tooling
• with a deployment environment
VERSION is a touchstone
The layout is a contract:
• Orthogonal platform tooling is easy to develop with a consistent

repository layout

- Very mvp

Inverted, platform-supported CLIs for speed and governance

6

Org X <technology_facet/> list Template(s) Build (&ut) Package Publish Deploy Int-Test*

Java (lib/app) 2 Y Y Y Y na

Protobuf defs 1 Y * * na na

Docker (general) 1 Y na Y na L/C

DB Migrations? (e.g.: /src/alembic) 1 Y Y Y na C

SQL Scripts (Snowflake T & V) 2 na zip Y C

ETL Configs 2 na zip C?

Docs! N* Y varies Y* na L

…

“How to build this repository?” – a question no dev in a platform ecosystem should ever have to utter.
Repositories with a standardized layout and interaction models gain an exponential lift by having CLIs that work with a type of repository
or perform actions on all standard repositories to the same effect.
Example commands:

CLIs are governed by the platform
team, built by technology
practitioners - harmonizing behaviors
while encoding standards and defaults
orthogonally.

A standard layout allows the platform
team to determine where CLIs are
missing & where common options need
to be reconsidered.

This makes CI much easier to reason
about, as the CLIs that devs use locally to
build a repo will build it anywhere

demo_code/repo_x/:> build
demo_code/repo_x/:> <tech_x> package
demo_code/repo_x/:> <tech_y> publish
demo_code/repo_x/:> docs

A “good CLI” in this strategy:
• wraps a technology or facet into a consistent CLI command &

lifecycle interface
• interacts with the manifest for per-repo overrides & config
• Consistently interacts with the standard layout wrt working space

How to start now (new repos)

7

1. Decide on a few facets and technologies you need N of, libs in your default lang is a good first choice
2. Docker images a decent second
3. Docs and diagrams as code a reasonable third
4. A couple layered templates
5. Probably some Infrastructure as Code modules - TF module, SLS base pieces, or Pulimi all decent options

1. Then you scale the practice by iteratively applying it to existing repos, chopping them up as reasonable and useful
• Find a place in your architecture that causes release management challenges, or is deeply challenged by Conway's

law, and break things up
2. Extract and version a data model so its code generation generates external libs rather than in-build-situ "temp" libs
3. Look for subsections you wish you had better testing for, and use extraction to a repo as a lever
4. Infra-instances & multi-instance configs are another place where separation of concerns by repo facet can be

operationally impactful (deploy app v=x with config v=y to target=z)

How to scale & impact legacy code

Common Responses

8

1. <foo/> uses a monorepo
2. I don't like microservices
3. Generated repos get stale
4. Dev teams should have the flexibility to define their own repo layouts
5. You need tooling for this
6. Same problems in a monorepo/you can do that in a monorepo
7. This is painful with gitflow

Common Side-Effects

9

1. ‘Architecting with repos’ will naturally produce a more modular, maintainable, and testable ecosystem of
software components, regardless of target deployment architecture

2. Easy to create mechanisms to express runtime dependencies as abstractions for service-locator style
interactions

3. It’s easier to perform meta-analysis on the codebase (e.g.: do <x> to all the python libs is much easier to
reason about, as is the question “how much documentation do we have for component y?”)

4. Larger experiments with design happen faster with the reusable components and architecture patterns –
it is easier to propose new things and see how they will fit (this works quite well for Infra as Code)

5. Developers can move across larger expanses of code more quickly, focusing on learning a new tech or
subsection rather than the ideas of each repository designer or vendor

6. Provides a clear path for how to introduce a new kind of technology into the ecosystem as a one-off and
then with developed standards and harmonized tooling – a happy path for the platform team!

7. Standardized wrapper CLIs also allow instrumentation and governance around tool use in the software
supply chain

8. Pairs well with Trunk Based Development and aggressive and automated CI/CDD ecosystems

Other Examples

10

Platform engineering for [data]

